Preparing for the Sixth Seal (Revelation 6:12)

Scenario Earthquakes for Urban Areas Along the Atlantic Seaboard of the United States

NYCEM

The Sixth Seal: NY City Destroyed

The Sixth Seal: NY City Destroyed

If today a magnitude 6 earthquake were to occur centered on New York City, what would its effects be? Will the loss be 10 or 100 billion dollars? Will there be 10 or 10,000 fatalities? Will there be 1,000 or 100,000 homeless needing shelter? Can government function, provide assistance, and maintain order?

At this time, no satisfactory answers to these questions are available. A few years ago, rudimentary scenario studies were made for Boston and New York with limited scope and uncertain results. For most eastern cities, including Washington D.C., we know even less about the economic, societal and political impacts from significant earthquakes, whatever their rate of occurrence.

Why do we know so little about such vital public issues? Because the public has been lulled into believing that seriously damaging quakes are so unlikely in the east that in essence we do not need to consider them. We shall examine the validity of this widely held opinion.

Is the public’s earthquake awareness (or lack thereof) controlled by perceived low Seismicity, Seismic Hazard, or Seismic Risk? How do these three seismic features differ from, and relate to each other? In many portions of California, earthquake awareness is refreshed in a major way about once every decade (and in some places even more often) by virtually every person experiencing a damaging event. The occurrence of earthquakes of given magnitudes in time and space, not withstanding their effects, are the manifestations of seismicity. Ground shaking, faulting, landslides or soil liquefaction are the manifestations of seismic hazard. Damage to structures, and loss of life, limb, material assets, business and services are the manifestations of seismic risk. By sheer experience, California’s public understands fairly well these three interconnected manifestations of the earthquake phenomenon. This awareness is reflected in public policy, enforcement of seismic regulations, and preparedness in both the public and private sector. In the eastern U.S., the public and its decision makers generally do not understand them because of inexperience. Judging seismic risk by rates of seismicity alone (which are low in the east but high in the west) has undoubtedly contributed to the public’s tendency to belittle the seismic loss potential for eastern urban regions.

Let us compare two hypothetical locations, one in California and one in New York City. Assume the location in California does experience, on average, one M = 6 every 10 years, compared to New York once every 1,000 years. This implies a ratio of rates of seismicity of 100:1. Does that mean the ratio of expected losses (when annualized per year) is also 100:1? Most likely not. That ratio may be closer to 10:1, which seems to imply that taking our clues from seismicity alone may lead to an underestimation of the potential seismic risks in the east. Why should this be so?

To check the assertion, let us make a back-of-the-envelope estimate. The expected seismic risk for a given area is defined as the area-integrated product of: seismic hazard (expected shaking level), assets ($ and people), and the assets’ vulnerabilities (that is, their expected fractional loss given a certain hazard – say, shaking level). Thus, if we have a 100 times lower seismicity rate in New York compared to California, which at any given point from a given quake may yield a 2 times higher shaking level in New York compared to California because ground motions in the east are known to differ from those in the west; and if we have a 2 times higher asset density (a modest assumption for Manhattan!), and a 2 times higher vulnerability (again a modest assumption when considering the large stock of unreinforced masonry buildings and aged infrastructure in New York), then our California/New York ratio for annualized loss potential may be on the order of (100/(2x2x2)):1. That implies about a 12:1 risk ratio between the California and New York location, compared to a 100:1 ratio in seismicity rates.

From this example it appears that seismic awareness in the east may be more controlled by the rate of seismicity than by the less well understood risk potential. This misunderstanding is one of the reasons why earthquake awareness and preparedness in the densely populated east is so disproportionally low relative to its seismic loss potential. Rare but potentially catastrophic losses in the east compete in attention with more frequent moderate losses in the west. New York City is the paramount example of a low-probability, high-impact seismic risk, the sort of risk that is hard to insure against, or mobilize public action to reduce the risks.

There are basically two ways to respond. One is to do little and wait until one or more disastrous events occur. Then react to these – albeit disastrous – “windows of opportunity.” That is, pay after the unmitigated facts, rather than attempt to control their outcome. This is a high-stakes approach, considering the evolved state of the economy. The other approach is to invest in mitigation ahead of time, and use scientific knowledge and inference, education, technology transfer, and combine it with a mixture of regulatory and/or economic incentives to implement earthquake preparedness. The National Earthquake Hazard Reduction Program (NEHRP) has attempted the latter while much of the public tends to cling to the former of the two options. Realistic and reliable quantitative loss estimation techniques are essential to evaluate the relative merits of the two approaches.

The current efforts in the eastern U.S., including New York City, to start the enforcement of seismic building codes for new constructions are important first steps in the right direction. Similarly, the emerging efforts to include seismic rehabilitation strategies in the generally needed overhaul of the cities’ aged infrastructures such as bridges, water, sewer, power and transportation is commendable and needs to be pursued with diligence and persistence. But at the current pace of new construction replacing older buildings and lifelines, it will take many decades or a century before a major fraction of the stock of built assets will become seismically more resilient than the current inventory is. For some time, this leaves society exposed to very high seismic risks. The only consolation is that seismicity on average is low, and, hence with some luck, the earthquakes will not outpace any ongoing efforts to make eastern cities more earthquake resilient gradually. Nevertheless, M = 5 to M = 6 earthquakes at distances of tens of km must be considered a credible risk at almost any time for cities like Boston, New York or Philadelphia. M = 7 events, while possible, are much less likely; and in many respects, even if building codes will have affected the resilience of a future improved building stock, M = 7 events would cause virtually unmanageable situations. Given these bleak prospects, it will be necessary to focus on crucial elements such as maintaining access to cities by strengthening critical bridges, improving the structural and nonstructural performance of hospitals, and having a nationally supported plan how to assist a devastated region in case of a truly severe earthquake. No realistic and coordinated planning of this sort exists at this time for most eastern cities.

The current efforts by the Federal Emergency Management Administration (FEMA) via the National Institute of Building Sciences (NIBS) to provide a standard methodology (RMS, 1994) and planning tools for making systematic, computerized loss estimates for annualized probabilistic calculations as well as for individual scenario events, is commendable. But these new tools provide only a shell with little regional data content. What is needed are the detailed data bases on inventory of buildings and lifelines with their locally specific seismic fragility properties. Similar data are needed for hospitals, shelters, firehouses, police stations and other emergency service providers. Moreover, the soil and rock conditions which control the shaking and soil liquefaction properties for any given event, need to be systematically compiled into Geographical Information System (GIS) data bases so they can be combined with the inventory of built assets for quantitative loss and impact estimates. Even under the best of conceivable funding conditions, it will take years before such data bases can be established so they will be sufficiently reliable and detailed to perform realistic and credible loss scenarios. Without such planning tools, society will remain in the dark as to what it may encounter from a future major eastern earthquake. Given these uncertainties, and despite them, both the public and private sector must develop at least some basic concepts for contingency plans. For instance, the New York City financial service industry, from banks to the stock and bond markets and beyond, ought to consider operational contingency planning, first in terms of strengthening their operational facilities, but also for temporary backup operations until operations in the designated facilities can return to some measure of normalcy. The Federal Reserve in its oversight function for this industry needs to take a hard look at this situation.

A society, whose economy depends increasingly so crucially on rapid exchange of vast quantities of information must become concerned with strengthening its communication facilities together with the facilities into which the information is channeled. In principle, the availability of satellite communication (especially if self-powered) with direct up and down links, provides here an opportunity that is potentially a great advantage over distributed buried networks. Distributed networks for transportation, power, gas, water, sewer and cabled communication will be expensive to harden (or restore after an event).

In all future instances of major capital spending on buildings and urban infrastructures, the incorporation of seismically resilient design principles at all stages of realization will be the most effective way to reduce society’s exposure to high seismic risks. To achieve this, all levels of government need to utilize legislative and regulatory options; insurance industries need to build economic incentives for seismic safety features into their insurance policy offerings; and the private sector, through trade and professional organizations’ planning efforts, needs to develop a healthy self-protective stand. Also, the insurance industry needs to invest more aggressively into broadly based research activities with the objective to quantify the seismic hazards, the exposed assets and their seismic fragilities much more accurately than currently possible. Only together these combined measures may first help to quantify and then reduce our currently untenably large seismic risk exposures in the virtually unprepared eastern cities. Given the low-probability/high-impact situation in this part of the country, seismic safety planning needs to be woven into both the regular capital spending and daily operational procedures. Without it we must be prepared to see little progress. Unless we succeed to build seismic safety considerations into everyday decision making as a normal procedure of doing business, society will lose the race against the unstoppable forces of nature. While we never can entirely win this race, we can succeed in converting unmitigated catastrophes into manageable disasters, or better, tolerable natural events.

Don’t Forget About the Sixth Seal (Revelation 6:12)

Don’t forget about earthquakes, feds tell city

Although New York’s modern skyscrapers are less likely to be damaged in an earthquake than shorter structures, a new study suggests the East Coast is more vulnerable than previously thought. The new findings will help alter building codes.

By Mark Fahey
July 18, 2014 10:03 a.m.

New York Earthquake Hazard

New York Earthquake Hazard

The U.S. Geological Survey had good and bad news for New Yorkers on Thursday. In releasing its latest set of seismic maps the agency said earthquakes are a slightly lower hazard for New York City’s skyscrapers than previously thought, but on the other hand noted that the East Coast may be able to produce larger, more dangerous earthquakes than previous assessments have indicated.The 2014 maps were created with input from hundreds of experts from across the country and are based on much stronger data than the 2008 maps, said Mark Petersen, chief of the USGS National Seismic Hazard Mapping Project. The bottom line for the nation’s largest city is that the area is at a slightly lower risk for the types of slow-shaking earthquakes that are especially damaging to tall spires of which New York has more than most places, but the city is still at high risk due to its population density and aging structures, said Mr. Petersen.

“Many of the overall patterns are the same in this map as in previous maps,” said Mr. Petersen. “There are large uncertainties in seismic hazards in the eastern United States. [New York City] has a lot of exposure and some vulnerability, but people forget about earthquakes because you don’t see damage from ground shaking happening very often.”

Just because they’re infrequent doesn’t mean that large and potentially disastrous earthquakes can’t occur in the area. The new maps put the largest expected magnitude at 8, significantly higher than the 2008 peak of 7.7 on a logarithmic scale. The scientific understanding of East Coast earthquakes has expanded in recent years thanks to a magnitude 5.8 earthquake in Virginia in 2011 that was felt by tens of millions of people across the eastern U.S. New data compiled by the nuclear power industry has also helped experts understand quakes.

“The update shows New York at an intermediate level,” said Arthur Lerner-Lam, deputy director of Columbia’s Lamont-Doherty Earth Observatory. “You have to combine that with the exposure of buildings and people and the fragility of buildings and people. In terms of safety and economics, New York has a substantial risk.”

Oddly enough, it’s not the modern tall towers that are most at risk. Those buildings become like inverted pendulums in the high frequency shakes that are more common on the East Coast than in the West. But the city’s old eight- and 10-story masonry structures could suffer in a large quake, said Mr. Lerner-Lam. Engineers use maps like those released on Thursday to evaluate the minimum structural requirements at building sites, he said. The risk of an earthquake has to be determined over the building’s life span, not year-to-year.

“If a structure is going to exist for 100 years, frankly, it’s more than likely it’s going to see an earthquake over that time,” said Mr. Lerner-Lam. “You have to design for that event.”

The new USGS maps will feed into the city’s building-code review process, said a spokesman for the New York City Department of Buildings. Design provisions based on the maps are incorporated into a standard by the American Society of Civil Engineers, which is then adopted by the International Building Code and local jurisdictions like New York City. New York’s current provisions are based on the 2010 standards, but a new edition based on the just-released 2014 maps is due around 2016, he said.

“The standards for seismic safety in building codes are directly based upon USGS assessments of potential ground shaking from earthquakes, and have been for years,” said Jim Harris, a member and former chair of the Provisions Update Committee of the Building Seismic Safety Council, in a statement.

The seismic hazard model also feeds into risk assessment and insurance policies, according to Nilesh Shome, senior director of Risk Management Solutions, the largest insurance modeler in the industry. The new maps will help the insurance industry as a whole price earthquake insurance and manage catastrophic risk, said Mr. Shome. The industry collects more than $2.5 billion in premiums for earthquake insurance each year and underwrites more than $10 trillion in building risk, he said.

“People forget about history, that earthquakes have occurred in these regions in the past, and that they will occur in the future,” said Mr. Petersen. “They don’t occur very often, but the consequences and the costs can be high.”

The Sixth Seal: More Than Just Manhattan (Revelation 6:12)

New York, NY – In a Quake, Brooklyn Would Shake More Than Manhattan

The Sixth Seal

The Sixth Seal

By Brooklyn EagleNew York, NY – The last big earthquake in the New York City area, centered in New York Harbor just south of Rockaway, took place in 1884 and registered 5.2 on the Richter Scale. Another earthquake of this size can be expected and could be quite damaging, says Dr. Won-Young Kim, senior research scientist at the Lamont-Doherty Earth Observatory of Columbia University.

And Brooklyn, resting on sediment, would shake more than Manhattan, built on solid rock. “There would be more shaking and more damage,” Dr. Kim told the Brooklyn Eagle on Wednesday.

If an earthquake of a similar magnitude were to happen today near Brooklyn, “Many chimneys would topple. Poorly maintained buildings would fall down – some buildings are falling down now even without any shaking. People would not be hit by collapsing buildings, but they would be hit by falling debris. We need to get some of these buildings fixed,” he said.

But a 5.2 is “not comparable to Haiti,” he said. “That was huge.” Haiti’s devastating earthquake measured 7.0.

Brooklyn has a different environment than Haiti, and that makes all the difference, he said. Haiti is situated near tectonic plate boundaries, while Brooklyn is inside the North American plate, far from its boundary.

“The Caribbean plate is moving to the east, while the North American plate is moving towards the west. They move about 20 mm – slightly less than an inch – every year.” The plates are sliding past each other, and the movement is not smooth, leading to jolts, he said.

While we don’t have the opportunity for a large jolt in Brooklyn, we do have small, frequent quakes of a magnitude of 2 or 3 on the Richter Scale. In 2001 alone the city experienced two quakes: one in January, measuring 2.4, and one in October, measuring 2.6. The October quake, occurring soon after Sept. 11 terrorist attacks, “caused a lot of panic,” Dr. Kim said.

“People ask me, ‘Should I get earthquake insurance?’ I tell them no, earthquake insurance is expensive. Instead, use that money to fix chimneys and other things. Rather than panicky preparations, use common sense to make things better.”

Secure bookcases to the wall and make sure hanging furniture does not fall down, Dr. Kim said. “If you have antique porcelains or dishes, make sure they’re safely stored. In California, everything is anchored to the ground.”

While a small earthquake in Brooklyn may cause panic, “In California, a quake of magnitude 2 is called a micro-quake,” he added.

Don’t Forget About the Sixth Seal (Revelation 6:12)

Don’t forget about earthquakes, feds tell city

Although New York’s modern skyscrapers are less likely to be damaged in an earthquake than shorter structures, a new study suggests the East Coast is more vulnerable than previously thought. The new findings will help alter building codes.

By Mark Fahey
July 18, 2014 10:03 a.m.

New York Earthquake Hazard

New York Earthquake Hazard

The U.S. Geological Survey had good and bad news for New Yorkers on Thursday. In releasing its latest set of seismic maps the agency said earthquakes are a slightly lower hazard for New York City’s skyscrapers than previously thought, but on the other hand noted that the East Coast may be able to produce larger, more dangerous earthquakes than previous assessments have indicated.The 2014 maps were created with input from hundreds of experts from across the country and are based on much stronger data than the 2008 maps, said Mark Petersen, chief of the USGS National Seismic Hazard Mapping Project. The bottom line for the nation’s largest city is that the area is at a slightly lower risk for the types of slow-shaking earthquakes that are especially damaging to tall spires of which New York has more than most places, but the city is still at high risk due to its population density and aging structures, said Mr. Petersen.

“Many of the overall patterns are the same in this map as in previous maps,” said Mr. Petersen. “There are large uncertainties in seismic hazards in the eastern United States. [New York City] has a lot of exposure and some vulnerability, but people forget about earthquakes because you don’t see damage from ground shaking happening very often.”

Just because they’re infrequent doesn’t mean that large and potentially disastrous earthquakes can’t occur in the area. The new maps put the largest expected magnitude at 8, significantly higher than the 2008 peak of 7.7 on a logarithmic scale. The scientific understanding of East Coast earthquakes has expanded in recent years thanks to a magnitude 5.8 earthquake in Virginia in 2011 that was felt by tens of millions of people across the eastern U.S. New data compiled by the nuclear power industry has also helped experts understand quakes.

“The update shows New York at an intermediate level,” said Arthur Lerner-Lam, deputy director of Columbia’s Lamont-Doherty Earth Observatory. “You have to combine that with the exposure of buildings and people and the fragility of buildings and people. In terms of safety and economics, New York has a substantial risk.”

Oddly enough, it’s not the modern tall towers that are most at risk. Those buildings become like inverted pendulums in the high frequency shakes that are more common on the East Coast than in the West. But the city’s old eight- and 10-story masonry structures could suffer in a large quake, said Mr. Lerner-Lam. Engineers use maps like those released on Thursday to evaluate the minimum structural requirements at building sites, he said. The risk of an earthquake has to be determined over the building’s life span, not year-to-year.

“If a structure is going to exist for 100 years, frankly, it’s more than likely it’s going to see an earthquake over that time,” said Mr. Lerner-Lam. “You have to design for that event.”

The new USGS maps will feed into the city’s building-code review process, said a spokesman for the New York City Department of Buildings. Design provisions based on the maps are incorporated into a standard by the American Society of Civil Engineers, which is then adopted by the International Building Code and local jurisdictions like New York City. New York’s current provisions are based on the 2010 standards, but a new edition based on the just-released 2014 maps is due around 2016, he said.

“The standards for seismic safety in building codes are directly based upon USGS assessments of potential ground shaking from earthquakes, and have been for years,” said Jim Harris, a member and former chair of the Provisions Update Committee of the Building Seismic Safety Council, in a statement.

The seismic hazard model also feeds into risk assessment and insurance policies, according to Nilesh Shome, senior director of Risk Management Solutions, the largest insurance modeler in the industry. The new maps will help the insurance industry as a whole price earthquake insurance and manage catastrophic risk, said Mr. Shome. The industry collects more than $2.5 billion in premiums for earthquake insurance each year and underwrites more than $10 trillion in building risk, he said.

“People forget about history, that earthquakes have occurred in these regions in the past, and that they will occur in the future,” said Mr. Petersen. “They don’t occur very often, but the consequences and the costs can be high.”

USGS Evidence Shows Power of the Sixth Seal (Revelation 6:12)

New Evidence Shows Power of East Coast Earthquakes
Virginia Earthquake Triggered Landslides at Great Distances

Did You Feel the Virginia 2011 Earthquake?

Did You Feel the Virginia 2011 Earthquake?

Released: 11/6/2012 8:30:00 AM

USGS.gov

Earthquake shaking in the eastern United States can travel much farther and cause damage over larger areas than previously thought.

U.S. Geological Survey scientists found that last year’s magnitude 5.8 earthquake in Virginia triggered landslides at distances four times farther—and over an area 20 times larger—than previous research has shown.

“We used landslides as an example and direct physical evidence to see how far-reaching shaking from east coast earthquakes could be,” said Randall Jibson, USGS scientist and lead author of this study. “Not every earthquake will trigger landslides, but we can use landslide distributions to estimate characteristics of earthquake energy and how far regional ground shaking could occur.”

“Scientists are confirming with empirical data what more than 50 million people in the eastern U.S. experienced firsthand: this was one powerful earthquake,” said USGS Director Marcia McNutt. “Calibrating the distance over which landslides occur may also help us reach back into the geologic record to look for evidence of past history of major earthquakes from the Virginia seismic zone.”

This study will help inform earthquake hazard and risk assessments as well as emergency preparedness, whether for landslides or other earthquake effects.

This study also supports existing research showing that although earthquakes are less frequent in the East, their damaging effects can extend over a much larger area as compared to the western United States.

The research is being presented today at the Geological Society of America conference, and will be published in the December 2012 issue of the Bulletin of the Seismological Society of America.

The USGS found that the farthest landslide from the 2011 Virginia earthquake was 245 km (150 miles) from the epicenter. This is by far the greatest landslide distance recorded from any other earthquake of similar magnitude. Previous studies of worldwide earthquakes indicated that landslides occurred no farther than 60 km (36 miles) from the epicenter of a magnitude 5.8 earthquake.

“What makes this new study so unique is that it provides direct observational evidence from the largest earthquake to occur in more than 100 years in the eastern U.S,” said Jibson. “Now that we know more about the power of East Coast earthquakes, equations that predict ground shaking might need to be revised.”

It is estimated that approximately one-third of the U.S. population could have felt last year’s earthquake in Virginia, more than any earthquake in U.S. history. About 148,000 people reported their ground-shaking experiences caused by the earthquake on the USGS “Did You Feel It?” website. Shaking reports came from southeastern Canada to Florida and as far west as Texas.

In addition to the great landslide distances recorded, the landslides from the 2011 Virginia earthquake occurred in an area 20 times larger than expected from studies of worldwide earthquakes. Scientists plotted the landslide locations that were farthest out and then calculated the area enclosed by those landslides. The observed landslides from last year’s Virginia earthquake enclose an area of about 33,400 km2, while previous studies indicated an expected area of about 1,500 km2 from an earthquake of similar magnitude.

“The landslide distances from last year’s Virginia earthquake are remarkable compared to historical landslides across the world and represent the largest distance limit ever recorded,” said Edwin Harp, USGS scientist and co-author of this study. “There are limitations to our research, but the bottom line is that we now have a better understanding of the power of East Coast earthquakes and potential damage scenarios.”

The difference between seismic shaking in the East versus the West is due in part to the geologic structure and rock properties that allow seismic waves to travel farther without weakening.

Learn more about the 2011 central Virginia earthquake.

 

The History Of New York Earthquakes: Before The Sixth Seal (Rev 6:12)

 

The Historic Earthquakes
Near New York City, New York
1884 08 10 19:07 UTC
Magnitude 5.5
Intensity VII

New York historic earthquakes

USGS.gov

This severe earthquake affected an area roughly extending along the Atlantic Coast from southern Maine to central Virginia and westward to Cleveland, Ohio. Chimneys were knocked down and walls were cracked in several States, including Connecticut, New Jersey, New York, and Pennsylvania. Many towns from Hartford, Connecticut, to West Chester,Pennsylvania.

Property damage was severe at Amityville and Jamaica, New York, where several chimneys were “overturned” and large cracks formed in walls. Two chimneys were thrown down and bricks were shaken from other chimneys at Stratford (Fairfield County), Conn.; water in the Housatonic River was agitated violently. At Bloomfield, N.J., and Chester, Pa., several chimneys were downed and crockery was broken. Chimneys also were damaged at Mount Vernon, N.Y., and Allentown, Easton, and Philadelphia, Pa. Three shocks occurred, the second of which was most violent. This earthquake also was reported felt in Vermont, Virginia, and Washington, D.C. Several slight aftershocks were reported on August 11.

The Sixth Seal Is Past Due (Revelation 6:12)

New York City is Past Due for an Earthquake

by , 03/22/11

filed under: Newsnyc earthquake, new york city earthquake risk, nyc earthquake threat, earthquake

New York City may appear to be an unlikely place for a major earthquake, but according to history, we’re past due for a serious shake. Seismologists at Columbia University’s Lamont-Doherty Earth Observatory say that about once every 100 years, an earthquake of at least a magnitude of 5.0 rocks the Big Apple. The last one was a 5.3 tremor that hit in 1884 — no one was killed, but buildings were damaged.

Any tremor above a 6.0 magnitude can be catastrophic, but it is extremely unlikely that New York would ever experience a quake like the recent 8.9 earthquake in Japan. A study by the Earth Observatory found that a 6.0 quake hits the area about every 670 years, and a 7.0 magnitude hits about every 3,400 years.

There are several fault lines in New York’s metro area, including one along 125th Street, which may have caused two small tremors in 1981 and a 5.2 magnitude quake in 1737. There is also a fault line on Dyckman Street in Inwood, and another in Dobbs Ferry in Westchester County. The New York City Area Consortium for Earthquake Loss Mitigation rates the chance of an earthquake hitting the city as moderate.

John Armbruster, a seismologist at the Earth Observatory, said that if a 5.0 magnitude quake struck New York today, it would result in hundreds of millions, possibly billions of dollars in damages. The city’s skyscrapers would not collapse, but older brick buildings and chimneys would topple, likely resulting in casualities.

The Earth Observatory is expanding its studies of potential earthquake damage to the city. They currently have six seismometers at different landmarks throughout the five boroughs, and this summer, they plan to place one at the arch in Washington Square Park and another in Bryant Park.

Won-Young Kim, who works alongside Armbuster, says his biggest concern is that we can’t predict when an earthquake might hit. “It can happen anytime soon,” Kim told the Metro. If it happened tomorrow, he added, “I would not be surprised. We can expect it any minute, we just don’t know when and where.”

Armbuster voiced similar concerns to the Daily News. “Will there be one in my lifetime or your lifetime? I don’t know,” he said. “But this is the longest period we’ve gone without one.”

Via Metro and NY Daily News

Images © Ed Yourdon

Earthquake Assessment For The Sixth Seal (Revelation 6:12)

Earthquake Risk in New Jersey

by Daniel R. Dombroski, Jr.

by Daniel R. Dombroski, Jr.

A 10–fold increase in amplitude represents about a 32–fold increase in energy released for the same duration of shaking. The best known magnitude scale is one designed by C.F. Richter in 1935 for
west coast earthquakes.

In New Jersey, earthquakes are measured with seismographs operated by the Lamont–Doherty Earth Observatory of Columbia University and the Delaware Geological Survey.

An earthquake’s intensity is determined by observing its effects at a particular place on the Earth’s surface. Intensity depends on the earthquake’s magnitude, the distance from the epicenter, and local geology. These scales are based on reports of people awakening, felt movements, sounds, and visible effects on structures and landscapes. The most commonly used scale in the United States is the Modified Mercalli Intensity Scale, and its values are usually reported in Roman numerals to distinguish them from magnitudes.

Past damage in New Jersey

New Jersey doesn’t get many earthquakes, but it does get some. Fortunately most are small. A few New Jersey earthquakes, as well as a few originating outside the state, have produced enough damage to warrant the concern of planners and emergency managers.

Damage in New Jersey from earthquakes has been minor: items knocked off shelves, cracked plaster and masonry, and fallen chimneys. Perhaps because no one was standing under a chimney when it fell, there are no recorded earthquake–related deaths in New Jersey. We will probably not be so fortunate in the future.

Area Affected by Eastern Earthquakes

 

Although the United States east of the Rocky Mountains has fewer and generally smaller earthquakes than the West, at least two factors  increase the earthquake risk in New Jersey and the East. Due to geologic differences, eastern earthquakes effect areas ten times larger than western ones of the same magnitude. Also, the eastern United States is more densely populated, and New Jersey is the most densely populated state in the nation.

Geologic Faults and Earthquakes in New Jersey

Although there are many faults in New Jersey, the Ramapo Fault, which separates the Piedmont and Highlands Physiographic Provinces, is the best known. In 1884 it was blamed for a damaging New York City earthquake simply because it was the only large fault mapped at the time. Subsequent investigations have shown the 1884 earthquake epicenter was actually located in Brooklyn, New York, at least 25 miles from the Ramapo Fault.

However, numerous minor earthquakes have been recorded in the Ramapo Fault Zone, a 10 to 20 mile wide area lying adjacent to, and west of, the actual fault.

More recently, in the 1970’s and early 1980’s, earthquake risk along the Ramapo Fault received attention because of its proximity to the Indian Point, New York, Nuclear Power Generating Station. East of the Rocky Mountains (including New Jersey), earthquakes do not break the ground surface. Their focuses lie at least a few miles below the Earth’s surface, and their locations are determined by interpreting seismographic records. Geologic fault lines seen on the surface today are evidence of ancient events. The presence or absence of mapped faults (fault lines) does not denote either a seismic hazard or the lack of one, and earthquakes can occur anywhere in New Jersey.

Frequency of Damaging Earthquakes in New Jersey

Records for the New York City area, which have been kept for 300 years, provide good information
for estimating the frequency of earthquakes in New Jersey.

Earthquakes with a maximum intensity of VII (see table DamagingEarthquakes Felt in New Jersey )have occurred in the New York City area in 1737, 1783, and 1884. One intensity VI, four intensity V’s, and at least three intensity III shocks have also occurred in the New York area over the last 300 years.

The time–spans between the intensity VII earthquakes were 46 and 101 years. This, and data for the smaller–intensity quakes, implies a return period of 100 years or less, and suggests New Jersey is overdue for a moderate earthquake like the one of 1884.

Buildings and Earthquakes

The 1995 earthquake in Kobe, Japan, is an example of what might happen in New Jersey in a similar quake. It registered a magnitude 7.2 on the Richter scale and produced widespread destruction. But it was the age of construction, soil and foundation condition, proximity to the fault, and type of structure that were the major determining factors in the performance of each building. Newer structures, built to the latest construction standards, appeared to perform relatively well, generally ensuring the life safety of occupants.

New Jersey’s building code has some provisions for earthquake–resistant design. But there are no requirements for retrofitting existing buildings — not even for unreinforced masonry structures that are most vulnerable to earthquake damage. Housing of this type is common in New Jersey’s crowded urban areas. If an earthquake the size of New York City’s 1884 quake (magnitude 5.5) were to occur today, severe damage would result. Fatalities would be likely.

Structures have collapsed in New Jersey without earthquakes; an earthquake would trigger many more. Building and housing codes need to be updated and strictly enforced to properly prepare for inevitable future earthquakes.

The Sixth Seal: More Than Just Manhattan (Revelation 6:12)


New York, NY – In a Quake, Brooklyn Would Shake More Than Manhattan

The Sixth Seal

The Sixth Seal

By Brooklyn Eagle

New York, NY – The last big earthquake in the New York City area, centered in New York Harbor just south of Rockaway, took place in 1884 and registered 5.2 on the Richter Scale. Another earthquake of this size can be expected and could be quite damaging, says Dr. Won-Young Kim, senior research scientist at the Lamont-Doherty Earth Observatory of Columbia University.

And Brooklyn, resting on sediment, would shake more than Manhattan, built on solid rock. “There would be more shaking and more damage,” Dr. Kim told the Brooklyn Eagle on Wednesday.

If an earthquake of a similar magnitude were to happen today near Brooklyn, “Many chimneys would topple. Poorly maintained buildings would fall down – some buildings are falling down now even without any shaking. People would not be hit by collapsing buildings, but they would be hit by falling debris. We need to get some of these buildings fixed,” he said.

But a 5.2 is “not comparable to Haiti,” he said. “That was huge.” Haiti’s devastating earthquake measured 7.0.

Brooklyn has a different environment than Haiti, and that makes all the difference, he said. Haiti is situated near tectonic plate boundaries, while Brooklyn is inside the North American plate, far from its boundary.

“The Caribbean plate is moving to the east, while the North American plate is moving towards the west. They move about 20 mm – slightly less than an inch – every year.” The plates are sliding past each other, and the movement is not smooth, leading to jolts, he said.

While we don’t have the opportunity for a large jolt in Brooklyn, we do have small, frequent quakes of a magnitude of 2 or 3 on the Richter Scale. In 2001 alone the city experienced two quakes: one in January, measuring 2.4, and one in October, measuring 2.6. The October quake, occurring soon after Sept. 11 terrorist attacks, “caused a lot of panic,” Dr. Kim said.

“People ask me, ‘Should I get earthquake insurance?’ I tell them no, earthquake insurance is expensive. Instead, use that money to fix chimneys and other things. Rather than panicky preparations, use common sense to make things better.”

Secure bookcases to the wall and make sure hanging furniture does not fall down, Dr. Kim said. “If you have antique porcelains or dishes, make sure they’re safely stored. In California, everything is anchored to the ground.”

While a small earthquake in Brooklyn may cause panic, “In California, a quake of magnitude 2 is called a micro-quake,” he added.

New Jersey #1 Disaster State: The Sixth Seal (Rev 6:12)

States of danger

Kiplinger News
New York Quake

The Sixth Seal: New York Quake

Disasters can happen anywhere and at any time. But some places experience more than their fair share of floods, tornadoes, hurricanes, winter storms and severe weather — so much so that certain locales earn frightening nicknames, such as Tornado Alley. No matter where you live, make sure you have the right kinds and necessary amounts of insurance coverage to protect your finances.

  • Estimated property damage (2006-2013): $26.4 billion
  • Most frequent disasters: damaging wind, winter storms, floods and flash floods
  • Weather-related fatalities (2006-2013): 87

New Jersey earns the top spot on this list, in large part due to damage wrought by Sandy — which had weakened from a hurricane to a post-tropical cyclone by the time it the Jersey Shore — in October 2012. The state was among the hardest hit by Sandy, which was the second-costliest storm in U.S. history, after Hurricane Katrina. Many homes and businesses were destroyed along the Jersey Shore, and a portion of the Atlantic City Boardwalk washed away. Shortly after Sandy hit, another storm brought wet snow that caused more power outages and damage.

Homeowners who live along the coast or in areas where there are frequent storms should take steps before hurricane season begins to protect their homes and finances from damage.