The Ramapo Fault Of The Sixth Seal (Rev 6:12)

Earthquake activity in the New York City area

tumblr_nvd6u2jzwc1s3115io1_400
From Wikipedia, the free encyclopedia

Although the eastern United States is not as seismically active as regions near plate boundaries, large and damaging earthquakes do occur there. Furthermore, when these rare eastern U.S. earthquakes occur, the areas affected by them are much larger than for western U.S. earthquakes of the same magnitude.[1] Thus, earthquakes represent at least a moderate hazard to East Coast cities, including New York City and adjacent areas of very high population density.

As can be seen in the maps of earthquake activity in this region, seismicity is scattered throughout most of the New York City area, with some hint of a concentration of earthquakes in the area surrounding Manhattan Island. The largest known earthquake in this region occurred in 1884 and had a magnitude of approximately 5. For this earthquake, observations of fallen bricks and cracked plaster were reported from eastern Pennsylvania to central Connecticut, and the maximum intensity reported was at two sites in western Long Island (Jamaica, New York and Amityville, New York). Two other earthquakes of approximately magnitude 5 occurred in this region in 1737 and 1783.[2][3][4] The figure on the right shows maps of the distribution of earthquakes of magnitude 3 and greater that occurred in this region from 1924 to 2010, along with locations of the larger earthquakes that occurred in 1737, 1783 and 1884.

Background

The NYC area is part of the geologically complex structure of the Northern Appalachian Mountains. This complex structure was formed during the past half billion years when the Earth’s crust underlying the Northern Appalachians was the site of two major geological episodes, each of which has left its imprint on the NYC area bedrock.[5][6] Between about 450 million years ago and about 250 million years ago, the Northern Appalachian region was affected by a continental collision, in which the ancient African continent collided with the ancient North American continent to form the supercontinent Pangaea. Beginning about 200 million years ago, the present-day Atlantic ocean began to form as plate tectonic forces began to rift apart the continent of Pangaea. The last major episode of geological activity to affect the bedrock in the New York area occurred about 100 million years ago, during the Mesozoic era, when continental rifting that led to the opening of the present-day Atlantic ocean formed the Hartford and Newark Mesozoic rift basins.

Earthquake rates in the northeastern United States are about 50 to 200 times lower than in California, but the earthquakes that do occur in the northeastern U.S. are typically felt over a much broader region than earthquakes of the same magnitude in the western U.S.[1] This means the area of damage from an earthquake in the northeastern U.S. could be larger than the area of damage caused by an earthquake of the same magnitude in the western U.S.[7] The cooler rocks in the northeastern U.S. contribute to the seismic energy propagating as much as ten times further than in the warmer rocks of California. A magnitude 4.0 eastern U.S. earthquake typically can be felt as far as 100 km (60 mi) from its epicenter, but it infrequently causes damage near its source. A magnitude 5.5 eastern U.S. earthquake, although uncommon, can be felt as far as 500 km (300 mi) from its epicenter, and can cause damage as far away as 40 km (25 mi) from its epicenter. Earthquakes stronger than about magnitude 5.0 generate ground motions that are strong enough to be damaging in the epicentral area.

At well-studied plate boundaries like the San Andreas fault system in California, scientists can often make observations that allow them to identify the specific fault on which an earthquake took place. In contrast, east of the Rocky Mountains this is rarely the case.[8] The NYC area is far from the boundaries of the North American plate, which are in the center of the Atlantic Ocean, in the Caribbean Sea, and along the west coast of North America. The seismicity of the northeastern U.S. is generally considered to be due to ancient zones of weakness that are being reactivated in the present-day stress field. In this model, pre-existing faults that were formed during ancient geological episodes persist in the intraplate crust, and the earthquakes occur when the present-day stress is released along these zones of weakness. The stress that causes the earthquakes is generally considered to be derived from present-day rifting at the Mid-Atlantic ridge.

Earthquakes and geologically mapped faults in the Northeastern U.S.

The northeastern U.S. has many known faults, but virtually all of the known faults have not been active for perhaps 90 million years or more. Also, the locations of the known faults are not well determined at earthquake depths. Accordingly, few (if any) earthquakes in the region can be unambiguously linked to known faults. Given the current geological and seismological data, it is difficult to determine if a known fault in this region is still active today and could produce a modern earthquake. As in most other areas east of the Rocky Mountains, the best guide to earthquake hazard in the northeastern U.S. is probably the locations of the past earthquakes themselves.[9]

The Ramapo fault and other New York City area faults

The Ramapo Fault, which marks the western boundary of the Newark rift basin, has been argued to be a major seismically active feature of this region,[10] but it is difficult to discern the extent to which the Ramapo fault (or any other specific mapped fault in the area) might be any more of a source of future earthquakes than any other parts of the region.[11] The Ramapo Fault zone spans more than 185 miles (300 kilometers) in New York, New Jersey, and Pennsylvania. It is a system of faults between the northern Appalachian Mountains and Piedmont areas to the east.[12] This fault is perhaps the best known fault zone in the Mid-Atlantic region, and some small earthquakes have been known to occur in its vicinity. Recently, public knowledge about the fault has increased – especially after the 1970s, when the fault’s proximity to the Indian Point nuclear plant in New York was noticed.

There is insufficient evidence to unequivocally demonstrate any strong correlation of earthquakes in the New York City area with specific faults or other geologic structures in this region. The damaging earthquake affecting New York City in 1884 was probably not associated with the Ramapo fault because the strongest shaking from that earthquake occurred on Long Island (quite far from the trace of the Ramapo fault). The relationship between faults and earthquakes in the New York City area is currently understood to be more complex than any simple association of a specific earthquake with a specific mapped fault.[13]

A 2008 study argued that a magnitude 6 or 7 earthquake might originate from the Ramapo fault zone,[3] which would almost definitely spawn hundreds or even thousands of fatalities and billions of dollars in damage.[14] Studying around 400 earthquakes over the past 300 years, the study also argued that there was an additional fault zone extending from the Ramapo Fault zone into southwestern Connecticut. As can be seen in the above figure of seismicity, earthquakes are scattered throughout this region, with no particular concentration of activity along the Ramapo fault, or along the hypothesized fault zone extending into southwestern Connecticut.[2][11][15]

Just off the northern terminus of the Ramapo fault is the Indian Point Nuclear Power Plant, built between 1956 and 1960 by Consolidated Edison Company. The plant began operating in 1963, and it has been the subject of a controversy over concerns that an earthquake from the Ramapo fault will affect the power plant. Whether or not the Ramapo fault actually does pose a threat to this nuclear power plant remains an open question.[11]

The Sixth Seal: More Than Just Manhattan (Revelation 6:12)

New York, NY – In a Quake, Brooklyn Would Shake More Than Manhattan

The Sixth Seal

The Sixth Seal

By Brooklyn Eagle

New York, NY – The last big earthquake in the New York City area, centered in New York Harbor just south of Rockaway, took place in 1884 and registered 5.2 on the Richter Scale. Another earthquake of this size can be expected and could be quite damaging, says Dr. Won-Young Kim, senior research scientist at the Lamont-Doherty Earth Observatory of Columbia University.

And Brooklyn, resting on sediment, would shake more than Manhattan, built on solid rock. “There would be more shaking and more damage,” Dr. Kim told the Brooklyn Eagle on Wednesday.

If an earthquake of a similar magnitude were to happen today near Brooklyn, “Many chimneys would topple. Poorly maintained buildings would fall down – some buildings are falling down now even without any shaking. People would not be hit by collapsing buildings, but they would be hit by falling debris. We need to get some of these buildings fixed,” he said.

But a 5.2 is “not comparable to Haiti,” he said. “That was huge.” Haiti’s devastating earthquake measured 7.0.

Brooklyn has a different environment than Haiti, and that makes all the difference, he said. Haiti is situated near tectonic plate boundaries, while Brooklyn is inside the North American plate, far from its boundary.

“The Caribbean plate is moving to the east, while the North American plate is moving towards the west. They move about 20 mm – slightly less than an inch – every year.” The plates are sliding past each other, and the movement is not smooth, leading to jolts, he said.

While we don’t have the opportunity for a large jolt in Brooklyn, we do have small, frequent quakes of a magnitude of 2 or 3 on the Richter Scale. In 2001 alone the city experienced two quakes: one in January, measuring 2.4, and one in October, measuring 2.6. The October quake, occurring soon after Sept. 11 terrorist attacks, “caused a lot of panic,” Dr. Kim said.

“People ask me, ‘Should I get earthquake insurance?’ I tell them no, earthquake insurance is expensive. Instead, use that money to fix chimneys and other things. Rather than panicky preparations, use common sense to make things better.”

Secure bookcases to the wall and make sure hanging furniture does not fall down, Dr. Kim said. “If you have antique porcelains or dishes, make sure they’re safely stored. In California, everything is anchored to the ground.”

While a small earthquake in Brooklyn may cause panic, “In California, a quake of magnitude 2 is called a micro-quake,” he added.

Don’t Forget About the Sixth Seal (Revelation 6:12)

Don’t forget about earthquakes, feds tell city

Although New York’s modern skyscrapers are less likely to be damaged in an earthquake than shorter structures, a new study suggests the East Coast is more vulnerable than previously thought. The new findings will help alter building codes.

By Mark Fahey
July 18, 2014 10:03 a.m.

New York Earthquake Hazard

New York Earthquake Hazard

The U.S. Geological Survey had good and bad news for New Yorkers on Thursday. In releasing its latest set of seismic maps the agency said earthquakes are a slightly lower hazard for New York City’s skyscrapers than previously thought, but on the other hand noted that the East Coast may be able to produce larger, more dangerous earthquakes than previous assessments have indicated.

The 2014 maps were created with input from hundreds of experts from across the country and are based on much stronger data than the 2008 maps, said Mark Petersen, chief of the USGS National Seismic Hazard Mapping Project. The bottom line for the nation’s largest city is that the area is at a slightly lower risk for the types of slow-shaking earthquakes that are especially damaging to tall spires of which New York has more than most places, but the city is still at high risk due to its population density and aging structures, said Mr. Petersen.

“Many of the overall patterns are the same in this map as in previous maps,” said Mr. Petersen. “There are large uncertainties in seismic hazards in the eastern United States. [New York City] has a lot of exposure and some vulnerability, but people forget about earthquakes because you don’t see damage from ground shaking happening very often.”

Just because they’re infrequent doesn’t mean that large and potentially disastrous earthquakes can’t occur in the area. The new maps put the largest expected magnitude at 8, significantly higher than the 2008 peak of 7.7 on a logarithmic scale. The scientific understanding of East Coast earthquakes has expanded in recent years thanks to a magnitude 5.8 earthquake in Virginia in 2011 that was felt by tens of millions of people across the eastern U.S. New data compiled by the nuclear power industry has also helped experts understand quakes.

“The update shows New York at an intermediate level,” said Arthur Lerner-Lam, deputy director of Columbia’s Lamont-Doherty Earth Observatory. “You have to combine that with the exposure of buildings and people and the fragility of buildings and people. In terms of safety and economics, New York has a substantial risk.”

Oddly enough, it’s not the modern tall towers that are most at risk. Those buildings become like inverted pendulums in the high frequency shakes that are more common on the East Coast than in the West. But the city’s old eight- and 10-story masonry structures could suffer in a large quake, said Mr. Lerner-Lam. Engineers use maps like those released on Thursday to evaluate the minimum structural requirements at building sites, he said. The risk of an earthquake has to be determined over the building’s life span, not year-to-year.

“If a structure is going to exist for 100 years, frankly, it’s more than likely it’s going to see an earthquake over that time,” said Mr. Lerner-Lam. “You have to design for that event.”

The new USGS maps will feed into the city’s building-code review process, said a spokesman for the New York City Department of Buildings. Design provisions based on the maps are incorporated into a standard by the American Society of Civil Engineers, which is then adopted by the International Building Code and local jurisdictions like New York City. New York’s current provisions are based on the 2010 standards, but a new edition based on the just-released 2014 maps is due around 2016, he said.

“The standards for seismic safety in building codes are directly based upon USGS assessments of potential ground shaking from earthquakes, and have been for years,” said Jim Harris, a member and former chair of the Provisions Update Committee of the Building Seismic Safety Council, in a statement.

The seismic hazard model also feeds into risk assessment and insurance policies, according to Nilesh Shome, senior director of Risk Management Solutions, the largest insurance modeler in the industry. The new maps will help the insurance industry as a whole price earthquake insurance and manage catastrophic risk, said Mr. Shome. The industry collects more than $2.5 billion in premiums for earthquake insurance each year and underwrites more than $10 trillion in building risk, he said.

“People forget about history, that earthquakes have occurred in these regions in the past, and that they will occur in the future,” said Mr. Petersen. “They don’t occur very often, but the consequences and the costs can be high.”

Preparing For The Sixth Seal (Revelation 6:12)

Preparing for the Great New York Earthquake
by Mike MullerShare

New York Quakes

New York Quakes Fault lines and known temblors in the New York City region between 1677-2004. The nuclear power plant at Indian Point is indicated by a Pe.

Most New Yorkers probably view the idea of a major earthquake hitting New York City as a plot device for a second-rate disaster movie. In a city where people worry about so much — stock market crashes, flooding, a terrorist attack — earthquakes, at least, do not have to be on the agenda.

A recent report by leading seismologists associated with Columbia University, though, may change that. The report concludes a serious quake is likely to hit the area.

The implication of this finding has yet to be examined. Although earthquakes are uncommon in the area relative to other parts of the world like California and Japan, the size and density of New York City puts it at a higher risk of damage. The type of earthquake most likely to occur here would mean that even a fairly small event could have a big impact.

The issue with earthquakes in this region is that they tend to be shallow and close to the surface,” explains Leonardo Seeber, a coauthor of the report. “That means objects at the surface are closer to the source. And that means even small earthquakes can be damaging.”

The past two decades have seen an increase in discussions about how to deal with earthquakes here. The most recent debate has revolved around the Indian Point nuclear power plant, in Buchanan, N.Y., a 30-mile drive north of the Bronx, and whether its nuclear reactors could withstand an earthquake. Closer to home, the city adopted new codes for its buildings even before the Lamont report, and the Port Authority and other agencies have retrofitted some buildings. Is this enough or does more need to be done? On the other hand, is the risk of an earthquake remote enough that public resources would be better spent addressing more immediate — and more likely — concerns?

Assessing the Risk

The report by scientists from the Lamont-Doherty Earth Observatory at Columbia University at summarizes decades of information on earthquakes in the area gleaned from a network of seismic instruments, studies of earthquakes from previous centuries through archival material like newspaper accounts and examination of fault lines.

The city can expect a magnitude 5 quake, which is strong enough to cause damage, once every 100 years, according to the report. (Magnitude is a measure of the energy released at the source of an earthquake.) The scientists also calculate that a magnitude 6, which is 10 times larger, has a 7 percent chance of happening once every 50 years and a magnitude 7 quake, 100 times larger, a 1.5 percent chance. Nobody knows the last time New York experienced quakes as large as a 6 or 7, although if once occurred it must have taken place before 1677, since geologists have reviewed data as far back as that year.

The last magnitude 5 earthquake in New York City hit in 1884, and it occurred off the coast of Rockaway Beach. Similar earthquakes occurred in 1737 and 1783.

By the time of the 1884 quake, New York was already a world class city, according to Kenneth Jackson, editor of The Encyclopedia of New York City.”In Manhattan,” Jackson said, “New York would have been characterized by very dense development. There was very little grass.”

A number of 8 to 10 story buildings graced the city, and “in world terms, that’s enormous,” according to Jackson. The city already boasted the world’s most extensive transportation network, with trolleys, elevated trains and the Brooklyn Bridge, and the best water system in the country. Thomas Edison had opened the Pearl Street power plant two years earlier.

All of this infrastructure withstood the quake fairly well. A number of chimneys crumbled and windows broke, but not much other damage occurred. Indeed, the New York Times reported that people on the Brooklyn Bridge could not tell the rumble was caused by anything more than the cable car that ran along the span.

Risks at Indian Point

As dense as the city was then though, New York has grown up and out in the 124 years since. Also, today’s metropolis poses some hazards few, if any people imagined in 1884.

In one of their major findings, the Lamont scientists identified a new fault line less than a mile from Indian Point. That is in addition to the already identified Ramapo fault a couple of miles from the plant. This is seen as significant because earthquakes occur at faults and are the most powerful near them.

This does not represent the first time people have raised concerns about earthquakes near Indian Point. A couple of years after the licenses were approved for Indian Point 2 in 1973 and Indian Point 3 in 1975, the state appealed to the Atomic Safety and Licensing Appeal Panel over seismic issues. The appeal was dismissed in 1976, but Michael Farrar, one of three members on the panel, dissented from his colleagues.

He thought the commission had not required the plant to be able to withstand the vibration that could occur during an earthquake. “I believe that an effort should be made to ascertain the maximum effective acceleration in some other, rational, manner,” Farrar wrote in his dissenting opinion. (Acceleration measures how quickly ground shaking speeds up.)

Con Edison, the plants’ operator at the time, agreed to set up seismic monitoring instruments in the area and develop geologic surveys. The Lamont study was able to locate the new fault line as a result of those instruments.

Ironically, though, while scientists can use the data to issue reports — the federal Nuclear Regulatory Commission cannot use it to determine whether the plant should have its license renewed. The Nuclear Regulatory Commission only considers the threat of earthquakes or terrorism during initial licensing hearings and does not revisit the issue during relicensing.

Lynn Sykes, lead author of the Lamont report who was also involved in the Indian Point licensing hearings, disputes that policy. The new information, he said, should be considered — “especially when considering a 20 year license renewal.”

The state agrees. Last year, Attorney General Andrew Cuomo began reaching out to other attorneys general to help convince the commission to include these risks during the hearings.

Cuomo and the state Department of Environmental Conservation delivered a 312-page petition to the commission that included reasons why earthquakes posed a risk to the power plants. The petition raised three major concerns regarding Indian Point:

  • The seismic analysis for Indian Point plants 2 and 3 did not consider decommissioned Indian Point 1. The state is worried that something could fall from that plant and damage the others.
  • The plant operators have not updated the facilities to address 20 years of new seismic data in the area.
  • The state contends that Entergy, the plant’s operator, has not been forthcoming. “It is not possible to verify either what improvements have been made to [Indian Point] or even to determine what improvements applicant alleges have been implemented,” the petition stated.

A spokesperson for Entergy told the New York Times that the plants are safe from earthquakes and are designed to withstand a magnitude 6 quake.

Lamont’s Sykes thinks the spokesperson must have been mistaken. “He seems to have confused the magnitude scale with intensity scale,” Sykes suggests. He points out that the plants are designed to withstand an event on the intensity scale of VII, which equals a magnitude of 5 or slightly higher in the region. (Intensity measures the effects on people and structures.) A magnitude 6 quake, in Sykes opinion, would indeed cause damage to the plant.

The two reactors at Indian Point generate about 10 percent of the state’s electricity. Since that power is sent out into a grid, it isn’t known how much the plant provides for New York City. Any abrupt closing of the plant — either because of damage or a withdrawal of the operating license — would require an “unprecedented level of cooperation among government leaders and agencies,” to replace its capacity, according to a 2006 report by the National Academies’ National Research Council, a private, nonprofit institution chartered by Congress.

Beyond the loss of electricity, activists worry about possible threats to human health and safety from any earthquake at Indian Point. Some local officials have raised concerns that radioactive elements at the plant, such as tritium and strontium, could leak through fractures in bedrock and into the Hudson River. An earthquake could create larger fractures and, so they worry, greater leaks.

In 2007, an earthquake hit the area surrounding Japan’s Kashiwazaki-Kariwa nuclear power plant, the world’s largest. The International Atomic Energy Agency determined “there was no significant damage to the parts of the plant important to safety,” from the quake. According to the agency, “The four reactors in operation at the time in the seven-unit complex shut down safely and there was a very small radioactive release well below public health and environmental safety limits.” The plant, however, remains closed.

Shaking the Streets

A quake near Indian Point would clearly have repercussions for New York City. But what if an earthquake hit one of the five boroughs?

In 2003, public and private officials, under the banner of the New York City Area Consortium for Earthquake Loss Mitigation, released a study of what would happen if a quake hit the metropolitan area today. Much of the report focused on building damage in Manhattan. It used the location of the 1884 quake, off the coast of Rockaway Beach, as its modern muse.

If a quake so serious that it is expected to occur once every 2,500 years took place off Rockaway, the consortium estimated it would cause $11.5 billion in damage to buildings in Manhattan. About half of that would result from damage to residential buildings. Even a moderate magnitude 5 earthquake would create an estimated 88,000 tons of debris (10,000 truckloads), which is 136 times the garbage cleared in Manhattan on an average day, they found.

The report does not estimate possible death and injury for New York City alone. But it said that, in the tri-state area as a whole, a magnitude 5 quake could result in a couple of dozen deaths, and a magnitude 7 would kill more than 6,500 people.

Ultimately, the consortium decided retrofitting all of the city’s buildings to prepare them for an earthquake would be “impractical and economically unrealistic,” and stressed the importance of identifying the most vulnerable areas of the city.

Unreinforced brick buildings, which are the most common type of building in Manhattan, are the most vulnerable to earthquakes because they do not absorb motion as well as more flexible wood and steel buildings. Structures built on soft soil are more also prone to risk since it amplifies ground shaking and has the potential to liquefy during a quake.

This makes the Upper East Side the most vulnerable area of Manhattan, according to the consortium report. Because of the soil type, the ground there during a magnitude 7 quake would shake at twice the acceleration of that in the Financial District. Chinatown faces considerable greater risk for the same reasons.

The city’s Office of Emergency Management agency does offer safety tips for earthquakes. It advises people to identify safe places in their homes, where they can stay until the shaking stops, The agency recommends hiding under heavy furniture and away from windows and other objects that could fall.

A special unit called New York Task Force 1 is trained to find victims trapped in rubble. The Office of Emergency Management holds annual training events for the unit.

The Buildings Department created its first seismic code in 1995. More recently, the city and state have adopted the International Building Code (which ironically is a national standard) and all its earthquake standards. The “international” code requires that buildings be prepared for the 2,500-year worst-case scenario.

Transportation Disruptions

With the state’s adoption of stricter codes in 2003, the Port Authority went back and assessed its facilities that were built before the adoption of the code, including bridges, bus terminals and the approaches to its tunnels. The authority decided it did not have to replace any of this and that retrofitting it could be done at a reasonable cost.

The authority first focused on the approaches to bridges and tunnels because they are rigid and cannot sway with the earth’s movement. It is upgrading the approaches to the George Washington Bridge and Lincoln Tunnel so they will be prepared for a worst-case scenario. The approaches to the Port Authority Bus Terminal on 42nd Street are being prepared to withstand two thirds of a worst-case scenario.

The terminal itself was retrofitted in 2007. Fifteen 80-foot tall supports were added to the outside of the structure.

A number of the city’s bridges could be easily retrofitted as well “in an economical and practical manner,” according to a study of three bridges by the consulting firm Parsons Brinckerhoff. Those bridges include the 102nd Street Bridge in Queens, and the 145th Street and Macombs Dam bridges, which span the Harlem River. To upgrade the 155th Street Viaduct, the city will strengthen its foundation and strengthen its steel columns and floor beams.

The city plans upgrades for the viaduct and the Madison Avenue bridge in 2010. The 2008 10-year capital strategy for the city includes $596 million for the seismic retrofitting of the four East River bridges, which is planned to begin in 2013. But that commitment has fluctuated over the years. In 2004, it was $833 million.

For its part, New York City Transit generally is not considering retrofitting its above ground or underground structures, according to a report presented at the American Society of Civil Engineers in 2004. New facilities, like the Second Avenue Subway and the Fulton Transit Center will be built to new, tougher standards.

Underground infrastructure, such as subway tunnels, electricity systems and sewers are generally safer from earthquakes than above ground facilities. But secondary effects from quakes, like falling debris and liquefied soil, could damage these structures.

Age and location — as with buildings — also add to vulnerability. “This stuff was laid years ago,” said Rae Zimmerman, professor of planning and public administration at New York University. “A lot of our transit infrastructure and water pipes are not flexible and a lot of the city is on sandy soil.” Most of Lower Manhattan, for example, is made up of such soil.

She also stresses the need for redundancy, where if one pipe or track went down, there would be another way to go. “The subway is beautiful in that respect,” she said. “During 9/11, they were able to avoid broken tracks.”

Setting Priorities

The city has not made preparing its infrastructure for an earthquake a top priority — and some experts think that makes sense.

“On the policy side, earthquakes are a low priority,” said Guy Nordenson, a civil engineer who was a major proponent of the city’s original seismic code, “and I think that’s a good thing.” He believes there are more important risks, such as dealing with the effects of climate change.

“There are many hazards, and any of these hazards can be as devastating, if not more so, than earthquakes,” agreed Mohamed Ettouney, who was also involved in writing the 1995 seismic code.

In fact, a recent field called multi-hazard engineering has emerged. It looks at the most efficient and economical way to prepare for hazards rather than preparing for all at once or addressing one hazard after the other. For example, while addressing one danger (say terrorism) identified as a priority, it makes sense to consider other threats that the government could prepare for at the same time (like earthquakes).

Scientists from Lamont-Doherty are also not urging anybody to rush to action in panic. Their report is meant to be a first step in a process that lays out potential hazards from earthquakes so that governments and businesses can make informed decisions about how to reduce risk.

“We now have a 300-year catalog of earthquakes that has been well calibrated” to estimate their size and location, said Sykes. “We also now have a 34-year study of data culled from Lamont’s network of seismic instruments.”

“Earthquake risk is not the highest priority in New York City, nor is dog-poop free sidewalks,” Seeber recently commented. But, he added, both deserve appropriately rational responses.

The Sixth Seal Is Long Overdue (Rev 6)

ON THE MAP; Exploring the Fault Where the Next Big One May Be Waiting

ramapo_factsheet_img_0

The Big One Awaits

By MARGO NASH
Published: March 25, 2001

Alexander Gates, a geology professor at Rutgers-Newark, is co-author of ”The Encyclopedia of Earthquakes and Volcanoes,” which will be published by Facts on File in July. He has been leading a four-year effort to remap an area known as the Sloatsburg Quadrangle, a 5-by-7-mile tract near Mahwah that crosses into New York State. The Ramapo Fault, which runs through it, was responsible for a big earthquake in 1884, and Dr. Gates warns that a recurrence is overdue. He recently talked about his findings.

Q. What have you found?

A. We’re basically looking at a lot more rock, and we’re looking at the fracturing and jointing in the bedrock and putting it on the maps. Any break in the rock is a fracture. If it has movement, then it’s a fault. There are a lot of faults that are offshoots of the Ramapo. Basically when there are faults, it means you had an earthquake that made it. So there was a lot of earthquake activity to produce these features. We are basically not in a period of earthquake activity along the Ramapo Fault now, but we can see that about six or seven times in history, about 250 million years ago, it had major earthquake activity. And because it’s such a fundamental zone of weakness, anytime anything happens, the Ramapo Fault goes.

Q. Where is the Ramapo Fault?

 A. The fault line is in western New Jersey and goes through a good chunk of the state, all the way down to Flemington. It goes right along where they put in the new 287. It continues northeast across the Hudson River right under the Indian Point power plant up into Westchester County. There are a lot of earthquakes rumbling around it every year, but not a big one for a while.

Q. Did you find anything that surprised you?

A. I found a lot of faults, splays that offshoot from the Ramapo that go 5 to 10 miles away from the fault. I have looked at the Ramapo Fault in other places too. I have seen splays 5 to 10 miles up into the Hudson Highlands. And you can see them right along the roadsides on 287. There’s been a lot of damage to those rocks, and obviously it was produced by fault activities. All of these faults have earthquake potential.

Q. Describe the 1884 earthquake.

A. It was in the northern part of the state near the Sloatsburg area. They didn’t have precise ways of describing the location then. There was lots of damage. Chimneys toppled over. But in 1884, it was a farming community, and there were not many people to be injured. Nobody appears to have written an account of the numbers who were injured.

Q. What lessons we can learn from previous earthquakes?

A. In 1960, the city of Agadir in Morocco had a 6.2 earthquake that killed 12,000 people, a third of the population, and injured a third more. I think it was because the city was unprepared.There had been an earthquake in the area 200 years before. But people discounted the possibility of a recurrence. Here in New Jersey, we should not make the same mistake. We should not forget that we had a 5.4 earthquake 117 years ago. The recurrence interval for an earthquake of that magnitude is every 50 years, and we are overdue. The Agadir was a 6.2, and a 5.4 to a 6.2 isn’t that big a jump.

Q. What are the dangers of a quake that size?

A. When you’re in a flat area in a wooden house it’s obviously not as dangerous, although it could cut off a gas line that could explode. There’s a real problem with infrastructure that is crumbling, like the bridges with crumbling cement. There’s a real danger we could wind up with our water supplies and electricity cut off if a sizable earthquake goes off. The best thing is to have regular upkeep and keep up new building codes. The new buildings will be O.K. But there is a sense of complacency.

MARGO NASH

America Overdue For The Sixth Seal (Revelation 6:12)

New Study: America Overdue For Major Earthquake … In States You Didn’t Suspect

New York Destroyed

Written by: Daniel Jennings Current Events

Most Americans have a reasonable chance of experiencing a destructive earthquake within the next 50 years, the US Geological Survey (USGS) has concluded.

The survey’s new National Seismic Hazard Map show that the risk of earthquakes in parts of the country — such as the Midwest, Oregon and the Rocky Mountains — is far higher than previously thought. All total, Americans in one-third of the country saw their risk for an earthquake increase.

“I worry that we will wake up one morning and see earthquake damage in our country that is as bad as that has occurred in some developing nations that have experienced large earthquakes,” Carl Hedde, a risk management expert at insurer Munich Reinsurance America, said of the map in The Wall Street Journal. “Beyond building collapse, a large amount of our infrastructure could be immediately damaged. Our roads, bridges and energy transmission systems can be severely impacted.”

Among the findings:

  • The earthquake danger in parts of Missouri, Arkansas, Tennessee, Illinois and South Carolina is as high as that in Los Angeles.
  • 42 of the 50 states have a reasonable chance of experiencing a damaging earthquake in the next 50 years.
  • Parts of 16 states have the highest risk of a quake: Alaska, Hawaii, California, Oregon, Washington, Nevada, Utah, Idaho, Montana, Wyoming, Missouri, Arkansas, Tennessee, Illinois, Kentucky and South Carolina

“We know the hazard has increased for small and moderate size earthquakes,” USGS scientist William Ellsworth told The Journal. “We don’t know as well how much the hazard has increased for large earthquakes. Our suspicion is it has but we are working on understanding this.”

Frightening Results From New Study

The USGS used new computer modeling technology and data collected from recent quakes such as the one that struck Washington, D.C. in 2011 to produce the new maps. The maps show that many Americans who thought they were safe from earthquakes are not.

New Relocation Manual Helps Average Americans Get Out Of Harms Way Before The Coming Crisis

Some of the survey’s other disturbing findings include:

    • The earthquake danger in Oklahoma, Alabama, Colorado, Georgia, Indiana, Michigan, Virginia, New York and parts of New England is higher than previously thought.
    • Some major metropolitan areas, including Memphis, Salt Lake City, Seattle, St. Louis and Charleston, have a higher risk of earthquakes than previously thought. One of the nation’s most dangerous faults, the New Madrid fault, runs right through St. Louis and Missouri. It is the nation’s second most active fault. On Dec. 16, 1811, the New Madrid Fault was the site of the most powerful series of earthquakes in American history.

“Obviously the building codes throughout the central U.S. do not generally take earthquake risk or the risk of a large earthquake into account,” USGS Seismologist Elizabeth Cochran told The Journal. Her take: Earthquake damage in the central US could be far greater than in places like California, because structures in some locations are not built to withstand quakes.

Others agree.

“Earthquakes are quite rare in many places but when they happen they cause very intense damage because people have not prepared,” Mark Petersen, the project chief for the USGS’s National Seismic Hazard Map, told The Journal.

This new map should be a wakeup call for Americans.

1884 A Forewarning Of The Sixth Seal (Revelation 6:12)

The Coney Island earthquake of 1884

Seismograph of New York Earthquake 1884

Seismograph of New York Earthquake 1884

January 20, 2010

New York City isn’t immune to earthquakes; a couple of small tremors measuring about 2.5 on the Richter scale even struck back in 2001 and 2002.

But on August 10, 1884, a more powerful earthquake hit. Estimated from 4.9 to 5.5 in magnitude, the tremor made houses shake, chimneys fall, and residents wonder what the heck was going on, according to a New York Times article two days later.

The quake was subsequently thought to have been centered off Far Rockaway or Coney Island.

It wasn’t the first moderate quake, and it won’t be the last. In a 2008 Columbia University study, seismologists reported that the city is crisscrossed with several fault lines, one along 125th Street. 

With that in mind, New Yorkers should expect a 5.0 or higher earthquake centered here every 100 years, the seismologists say.

Translation: We’re about 30 years overdue. Lucky for us the city adopted earthquake-resistant building codes in 1995.

Don’t Forget About the Sixth Seal (Revelation 6:12)

Don’t forget about earthquakes, feds tell city

Although New York’s modern skyscrapers are less likely to be damaged in an earthquake than shorter structures, a new study suggests the East Coast is more vulnerable than previously thought. The new findings will help alter building codes.

By Mark Fahey
July 18, 2014 10:03 a.m.

New York Earthquake Hazard

New York Earthquake Hazard

The U.S. Geological Survey had good and bad news for New Yorkers on Thursday. In releasing its latest set of seismic maps the agency said earthquakes are a slightly lower hazard for New York City’s skyscrapers than previously thought, but on the other hand noted that the East Coast may be able to produce larger, more dangerous earthquakes than previous assessments have indicated.

The 2014 maps were created with input from hundreds of experts from across the country and are based on much stronger data than the 2008 maps, said Mark Petersen, chief of the USGS National Seismic Hazard Mapping Project. The bottom line for the nation’s largest city is that the area is at a slightly lower risk for the types of slow-shaking earthquakes that are especially damaging to tall spires of which New York has more than most places, but the city is still at high risk due to its population density and aging structures, said Mr. Petersen.

“Many of the overall patterns are the same in this map as in previous maps,” said Mr. Petersen. “There are large uncertainties in seismic hazards in the eastern United States. [New York City] has a lot of exposure and some vulnerability, but people forget about earthquakes because you don’t see damage from ground shaking happening very often.”

Just because they’re infrequent doesn’t mean that large and potentially disastrous earthquakes can’t occur in the area. The new maps put the largest expected magnitude at 8, significantly higher than the 2008 peak of 7.7 on a logarithmic scale. The scientific understanding of East Coast earthquakes has expanded in recent years thanks to a magnitude 5.8 earthquake in Virginia in 2011 that was felt by tens of millions of people across the eastern U.S. New data compiled by the nuclear power industry has also helped experts understand quakes.

“The update shows New York at an intermediate level,” said Arthur Lerner-Lam, deputy director of Columbia’s Lamont-Doherty Earth Observatory. “You have to combine that with the exposure of buildings and people and the fragility of buildings and people. In terms of safety and economics, New York has a substantial risk.”

Oddly enough, it’s not the modern tall towers that are most at risk. Those buildings become like inverted pendulums in the high frequency shakes that are more common on the East Coast than in the West. But the city’s old eight- and 10-story masonry structures could suffer in a large quake, said Mr. Lerner-Lam. Engineers use maps like those released on Thursday to evaluate the minimum structural requirements at building sites, he said. The risk of an earthquake has to be determined over the building’s life span, not year-to-year.

“If a structure is going to exist for 100 years, frankly, it’s more than likely it’s going to see an earthquake over that time,” said Mr. Lerner-Lam. “You have to design for that event.”

The new USGS maps will feed into the city’s building-code review process, said a spokesman for the New York City Department of Buildings. Design provisions based on the maps are incorporated into a standard by the American Society of Civil Engineers, which is then adopted by the International Building Code and local jurisdictions like New York City. New York’s current provisions are based on the 2010 standards, but a new edition based on the just-released 2014 maps is due around 2016, he said.

“The standards for seismic safety in building codes are directly based upon USGS assessments of potential ground shaking from earthquakes, and have been for years,” said Jim Harris, a member and former chair of the Provisions Update Committee of the Building Seismic Safety Council, in a statement.

The seismic hazard model also feeds into risk assessment and insurance policies, according to Nilesh Shome, senior director of Risk Management Solutions, the largest insurance modeler in the industry. The new maps will help the insurance industry as a whole price earthquake insurance and manage catastrophic risk, said Mr. Shome. The industry collects more than $2.5 billion in premiums for earthquake insurance each year and underwrites more than $10 trillion in building risk, he said.

“People forget about history, that earthquakes have occurred in these regions in the past, and that they will occur in the future,” said Mr. Petersen. “They don’t occur very often, but the consequences and the costs can be high.”

The Ramapo Fault Of The Sixth Seal (Rev 6:12)

Earthquake activity in the New York City area

maxresdefault-300x224

From Wikipedia, the free encyclopedia

Although the eastern United States is not as seismically active as regions near plate boundaries, large and damaging earthquakes do occur there. Furthermore, when these rare eastern U.S. earthquakes occur, the areas affected by them are much larger than for western U.S. earthquakes of the same magnitude.[1] Thus, earthquakes represent at least a moderate hazard to East Coast cities, including New York City and adjacent areas of very high population density.

As can be seen in the maps of earthquake activity in this region, seismicity is scattered throughout most of the New York City area, with some hint of a concentration of earthquakes in the area surrounding Manhattan Island. The largest known earthquake in this region occurred in 1884 and had a magnitude of approximately 5. For this earthquake, observations of fallen bricks and cracked plaster were reported from eastern Pennsylvania to central Connecticut, and the maximum intensity reported was at two sites in western Long Island (Jamaica, New York and Amityville, New York). Two other earthquakes of approximately magnitude 5 occurred in this region in 1737 and 1783.[2][3][4] The figure on the right shows maps of the distribution of earthquakes of magnitude 3 and greater that occurred in this region from 1924 to 2010, along with locations of the larger earthquakes that occurred in 1737, 1783 and 1884.

Background

The NYC area is part of the geologically complex structure of the Northern Appalachian Mountains. This complex structure was formed during the past half billion years when the Earth’s crust underlying the Northern Appalachians was the site of two major geological episodes, each of which has left its imprint on the NYC area bedrock.[5][6] Between about 450 million years ago and about 250 million years ago, the Northern Appalachian region was affected by a continental collision, in which the ancient African continent collided with the ancient North American continent to form the supercontinent Pangaea. Beginning about 200 million years ago, the present-day Atlantic ocean began to form as plate tectonic forces began to rift apart the continent of Pangaea. The last major episode of geological activity to affect the bedrock in the New York area occurred about 100 million years ago, during the Mesozoic era, when continental rifting that led to the opening of the present-day Atlantic ocean formed the Hartford and Newark Mesozoic rift basins.

Earthquake rates in the northeastern United States are about 50 to 200 times lower than in California, but the earthquakes that do occur in the northeastern U.S. are typically felt over a much broader region than earthquakes of the same magnitude in the western U.S.[1] This means the area of damage from an earthquake in the northeastern U.S. could be larger than the area of damage caused by an earthquake of the same magnitude in the western U.S.[7] The cooler rocks in the northeastern U.S. contribute to the seismic energy propagating as much as ten times further than in the warmer rocks of California. A magnitude 4.0 eastern U.S. earthquake typically can be felt as far as 100 km (60 mi) from its epicenter, but it infrequently causes damage near its source. A magnitude 5.5 eastern U.S. earthquake, although uncommon, can be felt as far as 500 km (300 mi) from its epicenter, and can cause damage as far away as 40 km (25 mi) from its epicenter. Earthquakes stronger than about magnitude 5.0 generate ground motions that are strong enough to be damaging in the epicentral area.

At well-studied plate boundaries like the San Andreas fault system in California, scientists can often make observations that allow them to identify the specific fault on which an earthquake took place. In contrast, east of the Rocky Mountains this is rarely the case.[8] The NYC area is far from the boundaries of the North American plate, which are in the center of the Atlantic Ocean, in the Caribbean Sea, and along the west coast of North America. The seismicity of the northeastern U.S. is generally considered to be due to ancient zones of weakness that are being reactivated in the present-day stress field. In this model, pre-existing faults that were formed during ancient geological episodes persist in the intraplate crust, and the earthquakes occur when the present-day stress is released along these zones of weakness. The stress that causes the earthquakes is generally considered to be derived from present-day rifting at the Mid-Atlantic ridge.

Earthquakes and geologically mapped faults in the Northeastern U.S.

The northeastern U.S. has many known faults, but virtually all of the known faults have not been active for perhaps 90 million years or more. Also, the locations of the known faults are not well determined at earthquake depths. Accordingly, few (if any) earthquakes in the region can be unambiguously linked to known faults. Given the current geological and seismological data, it is difficult to determine if a known fault in this region is still active today and could produce a modern earthquake. As in most other areas east of the Rocky Mountains, the best guide to earthquake hazard in the northeastern U.S. is probably the locations of the past earthquakes themselves.[9]

The Ramapo fault and other New York City area faults

The Ramapo Fault, which marks the western boundary of the Newark rift basin, has been argued to be a major seismically active feature of this region,[10] but it is difficult to discern the extent to which the Ramapo fault (or any other specific mapped fault in the area) might be any more of a source of future earthquakes than any other parts of the region.[11] The Ramapo Fault zone spans more than 185 miles (300 kilometers) in New York, New Jersey, and Pennsylvania. It is a system of faults between the northern Appalachian Mountains and Piedmont areas to the east.[12] This fault is perhaps the best known fault zone in the Mid-Atlantic region, and some small earthquakes have been known to occur in its vicinity. Recently, public knowledge about the fault has increased – especially after the 1970s, when the fault’s proximity to the Indian Point nuclear plant in New York was noticed.

There is insufficient evidence to unequivocally demonstrate any strong correlation of earthquakes in the New York City area with specific faults or other geologic structures in this region. The damaging earthquake affecting New York City in 1884 was probably not associated with the Ramapo fault because the strongest shaking from that earthquake occurred on Long Island (quite far from the trace of the Ramapo fault). The relationship between faults and earthquakes in the New York City area is currently understood to be more complex than any simple association of a specific earthquake with a specific mapped fault.[13]

A 2008 study argued that a magnitude 6 or 7 earthquake might originate from the Ramapo fault zone,[3] which would almost definitely spawn hundreds or even thousands of fatalities and billions of dollars in damage.[14] Studying around 400 earthquakes over the past 300 years, the study also argued that there was an additional fault zone extending from the Ramapo Fault zone into southwestern Connecticut. As can be seen in the above figure of seismicity, earthquakes are scattered throughout this region, with no particular concentration of activity along the Ramapo fault, or along the hypothesized fault zone extending into southwestern Connecticut.[2][11][15]

Just off the northern terminus of the Ramapo fault is the Indian Point Nuclear Power Plant, built between 1956 and 1960 by Consolidated Edison Company. The plant began operating in 1963, and it has been the subject of a controversy over concerns that an earthquake from the Ramapo fault will affect the power plant. Whether or not the Ramapo fault actually does pose a threat to this nuclear power plant remains an open question.[11]

The Speed Of The Sixth Seal (Rev 6:12)

East Coast Earthquakes’ Speed Is Faster Than Previously Thought, Geologists Say

NY

Posted:

 

RICHMOND, Va. — Data from the 2011 earthquake centered in Virginia shows East Coast tremors can travel much farther and cause damage over larger areas than previously thought, the U.S. Geological Survey said Tuesday.

The agency estimated about one-third of the U.S. population could have felt the magnitude 5.8 tremor centered about 50 miles northwest of Richmond, which would mean more people were affected than any earthquake in U.S. history. Scientists also found the quake that caused more than $200 million in damage triggered landslides at distances four times farther and over an area 20 times larger than research from previous quakes has shown.

“Scientists are confirming with empirical data what more than 50 million people in the eastern U.S. experienced firsthand: this was one powerful earthquake,” USGS Director Marcia McNutt said in a news release about the findings presented at the Geological Society of America conference in Charlotte, N.C.

Researchers used landslides to see how far-reaching the shaking from East coast earthquakes could be. The unexpected jolt cracked the Washington Monument in spots and toppled delicate masonry high atop the National Cathedral. The shaking was felt from Georgia to New England.

According to the findings, the farthest landslide from the quake was 150 miles from the epicenter, a greater distance than any other similar-sized earthquake. Previous similar quakes have resulted in landslides no farther than 36 miles from the epicenter.

Additionally, the landslides from the 2011 tremor occurred in an area of about 12,895 square-miles – about the size of the state of Maryland. Previous studies indicated an area of about 580 square-miles – about the size of Houston – from an earthquake of similar magnitude.

“It’s just much more dangerous to have an earthquake at that level back on the East Coast than it would be on the West Coast,” said Edwin Harp, a USGS scientist and co-author of the study. “If something big happened, although it’s much less frequent, it would tend to damage a lot more buildings because they’re probably not quite up to the codes that they are in California.”

Geologic structure and rock properties on the East Coast allow seismic waves to travel farther without weakening compared with the West Coast, Harp said.

He said equations used to predict ground shaking might need to be revised now that scientists know more about the power of East Coast earthquakes.

The information also will help with building codes as well as emergency preparedness, the USGS said.

While West Coast earthquake veterans scoffed at what they viewed as only a moderate temblor, the August 2011 quake changed the way officials along the East Coast viewed emergency preparedness. Emergency response plans that once focused on hurricanes, tornadoes, flooding and snow are being revised to include quakes.

Some states have enacted laws specifically related to the quake, and there is anecdotal evidence of a spike in insurance coverage for earthquake damage.